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Abstract-A procedure for the design and training of artificial neural networks, used for

rapid and efficient controls and dynamics design and analysis for flexible space systems, has

been developed. Artificial neural networks are employed, such that once properly trained,

they provide a means of evaluating the impact of design changes rapidly. Specifically, two-

layer feedforward neural networks are designed to approximate the functional relationship

between the component/spacecraft design changes and measures of its performance or

nonlinear dynamics of the system/components. A training algorithm, based on statistical

sampling theory, is presented, which guarantees that the trained networks provide a

designer-specified degree of accuracy in mapping the functional relationship. Within each

iteration of this statistical-based algorithm, a sequential design algorithm is used for the

design and training of the feedforward network to provide rapid convergence to the network

goals. Here, at each sequence a new network is trained to minimize the error of previous

network. The proposed method should work for applications wherein an arbitrary large

source of training data can be generated. Two numerical examples are performed on a

spacecraft application in order to demonstrate the feasibility of the proposed approach.

I. INTRODUCTION

The overall design process for aerospace systems typically consists of the following steps:

design, analysis, and evaluation. If the evaluation is not satisfactory, the process is repeated

until a satisfactory design is obtained. Dynamics and controls analyses, which define the critical
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performance of any aerospace system are particularly important. Generally, all aerospace systems

experience excitations resulting from internal and operational disturbances, such as instrument

scanning in space systems or aerodynamic turbulence in aircraft. These excitations can potentially

interfere with the mission of the system. For example, in space systems, excessive vibrations

could be detrimental to its science instruments which usually require consistently steady pointing

in a specified direction for a prescribed time duration, or excessive vibrations due to turbulent

aerodynamics could diminish the ride quality or safety of an aircraft. Typically, in the course

of the design of an aerospace system, as the definitions and the designs of the system and its

components mature, several detailed dynamics and controls analyses are performed in order to

insure that all mission requirements are being met. These analyses, although necessary, have

historically been very time consuming and costly due to the large size of the aerospace system

analysis model, large number of disturbance scenarios involved, and the extent of analysis and

simulations that need to be carried out. For example, a typical pointing performance analysis

for a space system might require several months or more, which can amount to a considerable

drain on the time and resources of a space mission.

It is anticipated that artificial neural networks, once properly trained, can be used to

significantly speed up the design and analysis process of aerospace systems by allowing rapid

trade analysis as well as quick evaluation of potential impacts of design changes. It should be

emphasized here that the training time is not included in this assertion. It is envisioned that

the training of networks can be done autonomously during off hours, so that they are made

available to the designer/analyst when required. There are certain drawbacks associated with

neural networks. These include, the time-consuming nature of the training process, training

difficulties, such as optimization problems, and a lack of a meaningful way to establish network

accuracy. The focus of this paper is to address these specific issues, and to develop a methodology

for efficient and fast training of neural networks, with specified accuracy. Neural network
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applications are considered to provide static maps which approximate the functional relationships

between design change parameters (be they structural or material properties, in the disturbance

environment, or in the control system design) and the performance of the system/component;

and to provide dynamic maps which approximate complex and nonlinear dynamics of the

system/components. A critical concern with any approximation is its accuracy. Typical neural

network training involves the use of a select set of input and output data, taken from the

functional relationship to be approximated. If these training points are chosen judiciously, the

trained neural network should give a very good approximation. Bayesian statistical regularization

[1] and the Cross-Validation technique [2] can provide good approximation for points not in the

training set. However, there is no guarantee that the neural network will continue to give a

good approximation of the relationship for those points not in the training set. The design

methodology presented in this paper addresses this problem, in terms of allowing the design of

neural networks to a specific level of accuracy (in terms of approximating relationships), for a

given statistical confidence level, and accounting for input and output data not used in the original

training set. Moreover, a sequential training algorithm is presented for a two-layer feedforward

network, which should provide benefits, such as enhanced training speed, and automated network

architecture design. The proposed method should work for applications wherein an arbitrary large

source of training data can be generated. Numerical examples based on a spacecraft application

are carried out to demonstrate the feasibility of the proposed design methodology.

The paper is organized as follows. Following this introduction section, brief descriptions on

typical (conventional) dynamics analysis will be given. Next, discussions on neural networks,

their use to approximate functional relationships, and a typical design procedure, will be

presented. Then, the new neural network methodology, given in a step by step format, will

be presented, followed by a section with a detailed discussion on the convergence behavior

of the proposed ANN synthesis methodology and a section with numerical examples of the
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proposed approach applied to a NASA spacecraft model. Finally, a concluding remarks section

will close the paper.

II. TYPICAL DYNAMICS AND CONTROLS ANALYSIS

Whatever type of analysis to be performed, it would be highly beneficial to the analyst to

be able to rapidly assess the effects on overall system performance due to the almost inevitable

design changes that a system will undergo during its lifetime. During the design phase of

the aerospace system almost all components go through changes, with each change having the

potential to affect the performance of the system to some degree. In many instances, these

changes are expected to affect the performance of the system so much as to warrant a partial

or full re-analysis of its performance. In the area of spacecraft dynamics and controls, these

type of changes include: changes in the inertia or flexibility of the structural components which

would affect the dynamic characteristics of the spacecraft; changes in the control system design,

hardware, and software; or changes in the characteristics of the external and internal disturbances

that may act on the spacecraft in orbit. Now, depending on the nature and extent of these changes,

there may be a need to reevaluate the dynamical performance of the system. The dynamical

performance could be in terms of pointing and jitter performance, tracking performance, closed-

loop stability margin, and many other forms. The computational time and cost associated with

each of these performance analyses may be substantial. For example, to evaluate the effects

of changing the location of an instrument within the spacecraft bus on the pointing stability of

another instrument, a full finite element analysis, followed by a possible controller redesign,

closed-loop simulation of spacecraft response for possibly all disturbance scenarios, and a jitter

and stability analysis, are required. The cost of such analyses can be exorbitant, particularly,

when they have to be repeated several times during the design phase. One approach to this

problem is to use artificial neural networks (ANNs), particularly feedforward networks, for rapid

system analysis and design.
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III. RAPID ANALYSIS AND DESIGN WITH ANN

The motivation behind the use of an ANN is to speed up the analysis or design process

substantially. The main advantage of an ANN is in its ability to approximate functional

relationships, particularly nonlinear relationships. This can be a static relationship, one that

does not involve time explicitly, or a dynamics relationship, which explicitly involves time.

For an ANN there is no distinction between a static or dynamic map, there is just input/output

training data. For example, an ANN would be designed to approximate the mapping between the

first instrument location and the expected pointing performance of the second instrument. Once

such a network is trained, the pointing performance of the second instrument for a specified

location of the first instrument may be easily and almost instantaneously obtained by simulating

the ANN for the one input point, corresponding to the location of the first instrument. It is this

advantage of ANNs that promises savings in the overall design and analysis time. Although the

initial training time for an ANN may be long, it can be performed during off hours, in a semi-

automated manner, without much involvement by the designer(s). Another example could be an

ANN that would be designed to approximate the dynamic behavior of a nonlinear component,

e.g., a nonlinear reaction wheel with friction. Dynamic approximations via ANN are achieved

by using time delays and feedback of the output back to the ANN input, which is defined as

recurrence.

The successful design of an ANN depends on the proper training of the network as well as

the ability to characterize the accuracy of its approximation. The training of the network involves

the judicious selection of points in the input variable space, which along with the corresponding

output points, constitute the training set. For example, the design and training of an ANN for

mapping a component parameter to spacecraft performance relationship requires a number of

design points for use in training. These points generally span the range of the changes that
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the component parameter is allowed to have, many of which would cause significant changes

in the system model. The proper training of the network is the key to its ability to provide a

good mapping. However, this is possible only if one can quantify the degree of accuracy of

the approximation of the ANN, particularly for points in the input space not included in the

training set.

In this paper, a feedforward network with a single hidden layer, like the one shown in

Fig. 1, is considered. The feedforward network is designed to map the relationship between

an nc � 1 input vector,�, and annp � 1 output vectoryp. It has been shown in the literature

that a feedforward network, with only one hidden layer, can approximate a continuous function

to any degree of accuracy [3]-[5]. Furthermore, assume that the activation function for the

output layer is a pure linear. The output layer hasnp nodes, corresponding to the elements

of vector yp. The number of nodes in the hidden layer,nh is arbitrary, however, it has to be

large enough to guarantee convergence of the network to the functional relationship that it is

designed to approximate, but not too large as to cause overmapping. The network equation for

this two-layer feedforward network is given by

Yn = W2(f(W1�+B1)) +B2: (1)

Here,W1 and W2 represent thenh � nc and np � nh weighting matrices for the hidden and

output layers, respectively;B1 is thenh x q bias matrix, each column isb1, the bias vector for

the hidden layer;B2 is thenp x q bias matrix, each column isb2, the bias vector for the output

layer; f represents the activation function for the hidden layer;� is a nc � q matrix denoting

the collection ofq nc � 1 input vectors; andYn is annp � q matrix representing the output of

the network. For this work, the parameters of the feedforward network are adjusted using either

the back-propagation method [2], [6], or the Levenberg-Marquardt technique [7]. Ifq sets of

points are used for training the network, then the cost function to be minimized, in terms of the

sum squared error (SSE) of the network, can be written as
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E =

qnpX

k=1

e(k)2 =

qX

r=1

npX

j=1

(Yd(j; r)� Yn(j; r))
2 (2)

whereYd is a np x q matrix of the true outputs.

The use of feedforward ANNs has some advantages over the conventional approximation

techniques, such as polynomials and splines. For example, polynomials are hard to implement

in hardware due to signal saturation, and if they are of higher order, there may be stability

problems in determining the coefficients. ANNs, on the other hand, are very amenable to

hardware implementation. As a matter of fact, to date, several VLSI chips based on multilayer

neural network architecture are available [8]-[9]. Also, because of the highly interconnected

and coupled nature of ANNs, they are rather robust to hardware failures, since the weight is

distributed among many nodes.

There are a few problems associated with neural networks. One has to do with the rate of

convergence during training, in other words, training time. The second problem is selecting the

proper architecture, e.g., node numbers and layers, to use. Third, is the tendency of the steepest

descent technique, and even, pseudo-Newton methods, which are used in the training process, to

get stuck in local minima. This causes training problems and contribute substantially to the time

it takes to train a network. Finally, the training of the network is based solely on the given input

and output data points; there is no guarantee, when the network is given new input data points,

that the resulting output data will approximate the corresponding true output data to within the

specified error tolerance to which the network was designed. In the next section, a new and

novel design procedure is presented to address these problems with neural networks.

IV. NETWORK TRAINING FOR ACCURACY AND FAST CONVERGENCE

A. ANN Modeling

As mentioned earlier, ANNs may be used, within the context of dynamics and control,
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to approximate the functional relationship between changes in the system components and the

spacecraft performance measures (static maps) or to provide maps which approximate complex

and nonlinear dynamics of the system/components. These changes may include those effecting

the structural model of the system, the control system model, or the disturbance models. A typical

block diagram of a controlled spacecraft is given in Fig. 2. Here, the elements of the vector�s

could represent a wide variety of potential changes in the structural model, such as variation in

size for structural element, frequency uncertainty/variation in flexible modes, and many others

changes. Those changes which could impact the structural model must necessarily involve some

redistribution of mass, flexibility, or damping. The elements of�d could represent the changes

in the magnitude and phase characteristics of the external and internal disturbances, as well as

the location (on the structure) where these disturbances are acting. The external disturbances,

such as gravity gradient torques, atmospheric drag torques, and etc., are fairly well understood.

However, they generally depend on the geometry and inertia of the spacecraft which may undergo

several changes during the design phase. The internal disturbances are typically the result of

scanning or spinning instruments, or components whose characteristics may change radically in

the design phase. The elements of�c could represent the changes in the control system model.

Similar to the structural and disturbance models, the control system model may change several

times during the design phase due to changes in the control system hardware characteristics,

such as reaction wheels, rate gyros, star trackers, and etc., or changes in the system software,

such as controller gains, dynamics (frequency content), saturation limits, and others.

The performance of the spacecraft, in the context of dynamics and control, may be divided

into time-domain measures and frequency-domain measures. Time-domain performance mea-

sures are typically the pointing performance, jitter/stability performance, or tracking performance

of the spacecraft or its instruments. The frequency-domain performance measures are typically

the stability margins, closed-loop bandwidth, loop shapes, etc. In the static map, an ANN is
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sought which can map the relationship between the design change vector� and the spacecraft

performance measure vectoryp, where

� =

8<
:

�s
�d
�c

9=
;: (3)

To do this the ANN must be trained properly using training data consisting of a collection of

spacecraft performance measures corresponding to a number of design changes in the range of

interest.

In a dynamic map, the ANN is used to approximate the nonlinear and complex dynamics of

the spacecraft or its components. For example, ANN can approximate the nonlinear friction of

a reaction wheel assembly or the nonlinear large-angle attitude dynamics of the spacecraft, etc.

Assume that the dynamics of the system considered for approximation is given by

_x = f(x;u): (4)

Then, an ANN is designed to approximate the solution of this system of ordinary differential

equations from one time step to the next. The solution of the state vector in Eq. (4) can be

effectively approximated by

x(t+ T ) = g(x(t); u(t); u(t+ T )) (5)

whereT denotes a small time increment andg(:) is typically an unknown function which has

to be determined computationally by solving the system of ordinary differential equations (Eq.

(4)). Note that in some cases, e.g., digital control systems where inputs are sampled and held,

the termu(t+ T ) in Eq. (5) may be dropped. Now, an ANN can be designed to approximate

the nonlinear system in Eq. (5), as illustrated in Fig. 3. In this case, the inputs to the network

are the external inputs and the state at timet (or stepk) and the output of the network is the state

at time t+T (or stepk+1). The training data for the ANN would be a collection of inputs and

states in the range of interest as input data, and one-step-ahead propagated state as output data.
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B. Training with Fast Convergence

Here, an algorithm is presented to help with the three problems associated with the training of

ANNs, namely, size of the network, excessive training time, and getting stuck in a local minima.

The algorithm is a sequential algorithm, wherein at each step a new feedforward network is

designed and trained which minimizes the current error function, which represents the level of

achievement by all the previous ANNs. Assume that an ANN map is desired for a training

data [X;Y ], whereX represents an input sequence, andY denotes an output sequence. The

sequential training algorithm is summarized as follows:

a. Choose a feedforward network with one hidden layer. The hidden layer can be any type of

layer, such as tan sigmoid (hyperbolic tangent), log sigmoid (
�
1 + e�x

�
�1

), etc. The output

layer should be a pure linear layer.

b. Initially, use a small number of nodes,n0, for the hidden layer. The algorithm will

automatically increase that number as necessary to achieve the required error tolerance.

c. Based on a desired network error tolerance,etol, begin adjusting the parameters of the

two layer feedforward network, namely,W 1

1
; b1

1
;W 1

2
; and b1

2
. Here, the subscript indicates

the layer number and the superscript denotes the current network number. Note that

techniques, such as back-propagation procedure, or a pseudo-Newtonian technique, such

as the Levenberg-Marquardt algorithm, or any other optimization technique may be used to

perform the process of adjusting the network parameters.

d. Stop the training process as soon as the network error goal is achieved or some measure of the

rate of decrease of the network error (learning rate), for example the decrease in the network

error from some previous epoch to the current epoch, gets below a designer–defined level.

If the network error goal is attained, the training process is finished, otherwise, continue

with the algorithm.
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e. Update the overall weighting and bias matrices, and activation functions

WF

1
= W 1

1
; BF

1
= B1

1

WF

2
= W 1

2
; BF

2
= B1

2

fF = f1

(6)

f. Compute the current network error at each training point from Eq. (1) as follows:

D1 = Y �
�
W 1

2

�
f1

�
W 1

1
X +B1

1

��
+B1

2

�
(7)

wheref1( :) represents the activation function used.

g. Use the pair[X;D1] as the new training data. The idea is to train this second network

to approximate the network errors computed in Step f. Then, the two networks will be

combined into a single network (see Steps k and l) which will reduce the network errors.

h. Choose a new feedforward network with the same architecture as the previous, i.e. one

hidden layer and one output layer. Again, the hidden layer can be any type of layer, such

as tan sigmoid, log sigmoid, etc., and does not have to be of the same type as that for the

previous network. The output layer should remain as a pure linear layer.

i. Use a small number of nodes,n1, for the hidden layer. It is recommended to choose the

node number randomly from a range defined by the designer. At any rate, it is best that the

number of nodes chosen is different from that used in the previous network. This would

force the number of design variables (degrees of freedom) to change from the previous

problem, so that there is a lesser chance of continuously getting stuck in a local minima.

j. Based on the same desired network error tolerance,etol (from step c), begin adjusting the

parameters of the two-layer feedforward network, namely,W 2

1
; b2

1
;W 2

2
; and b2

2
.

k. If the network error goal is achieved, then form the overall network parameters as

WF

1
=

�
WF

1

W 2

1

�
; BF

1
=

�
BF
1

B2

1

�

WF

2
= [WF

2
W 2

2
] ; BF

2
= BF

2
+B2

2

fF =

�
fF

f2

� (8)
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and the training process is finished.

l. If the rate of decrease of the network, as discussed in step (d), gets below a designer–defined

level, stop the training process and update the current network parameters as

WF

1
 

�
WF

1

W 2

1

�
; BF

1
 

�
BF
1

B2

1

�

WF

2
 [WF

2
W 2

2
] ; BF

2
 BF

2
+B2

2

fF  

�
fF

f2

� (9)

m. Compute the current network error at each training point as follows:

D2 = D1 �

�
W 2

2

�
f2

�
W 2

1
X +B2

1

��
+B2

2

�
: (10)

n. In the first variation of the algorithm, use the pair[X;D2] as the new training data, and repeat

the algorithm, beginning from step (h), until one of three things happens: (i) network error

goals are attained at some sequence; (ii) a designer–defined limit on the total number of

training epochs (steps) is reached; or (iii) a designer-defined limit on the number of training

sequences is reached.

o. In the second variation of the algorithm, repeat the steps, beginning from step (e), but using

the overall weighting and bias matrices, and activation functions for the initial guess, i.e.,

W 1

1
 WF

1
; B1

1
 BF

1

W 1

2
 WF

2
; B1

2
 BF

2

f1  fF :

(11)

The first variation may converge faster, but could lead to larger than required network size.

On the other hand, the second variation could lead to substantially longer training time since

the size of the network to be trained increases at each step.

C. Network Accuracy

As mentioned previously, even if the ANN is trained such that the network error is exactly

zero there are no guarantees that it can provide an accurate approximation for points not in the
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training set. Of course, as the number of training points increases one expects that the accuracy

of the network would improve. However, there is no systematic way of establishing a priori this

increase in the accuracy of the network or ascertaining that it does occur. Nonetheless, for an

ANN to be useful in approximating or mapping functional relationships there must be a means of

quantifying its accuracy. To this end, an algorithm based on statistical theory is developed and

presented herein. The approach taken in the algorithm is to follow a binomial experimentation

concept in order to establish confidence intervals on the accuracy of the ANN’s approximations.

Once a network is trained, using the points in the training set, and an acceptable tolerance level

for the approximation error is defined (the error between the exact functional relationship and

ANN at any point in the design space), then the problem of network accuracy may be defined

in terms of a yes or no question, that is whether the network error at any point in the design

space is greater than the specified tolerance level or not. Now, if one randomly selects a number

of points in the design (input) space, for every point there would be two possible outcomes to

this question. Either the network error, corresponding to the design point, is greater than the

tolerance level or it is not. Experiments of this type, wherein repeated independent trials with

two possible outcomes are performed, are known as binomial experiments [10].

Assume thatn trials have been performed wherein for every trial the network error is

simulated for each input point, and the trial is considered a success if the network error is

greater than the tolerance level, and a failure if it is not. Denote the number of successes in

the n trials by the binomial random variableX and the probability of success byp. A point

estimator forp is given by p̂ = X
n

. Now, if the unknown probabilityp is not expected to be

too close to zero or one, a confidence interval forp may be established using the distribution

of the point estimator̂p. The distribution ofp̂ is approximately normally distributed with mean,

�p̂ = E
�
X
n

�
= p, and variance,�2p̂ = �2X=n

2 = pq=n, whereq = 1� p [10]. Now, a confidence

interval for the parameterp can be established for a sample of adequate size. Forn � 30; a
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(1� �)100% confidence interval for the binomial parameterp is approximately

p̂ � Z�=2

r
p̂q̂

n
< p < p̂ + Z�=2

r
p̂q̂

n
(12)

wherep̂ is the proportion of success in a random sample of sizen , q̂ = 1 � p̂, andZ�=2 is the

value of the standard normal curve leaving an area of�=2 to the right [10]. If p is the center

of a (1� �)100% interval, thenp̂ estimatesp without error. However, in most caseŝp will

not be equal top, but the size of the difference will be less thanZ�=2

q
p̂q̂
n with (1� �)100%

confidence. It should be noted that only the upper bound expression in Eq. (12) is useful for

application to the accurate design of ANN. The size of the sample required to ensure that the

error in estimatingp by p̂ will be less than a number, saye, with (1� �)100% confidence, is

given by [10]

n =
Z2

�=2p̂q̂

e2
�

Z2

�=2

4e2
: (13)

It is observed from Eq. (13) that the sample size needed is a function ofp̂, which itself is

computed from the sample. There are two ways around this. One is to take a preliminary small

sample withn1 � 30 to obtainp̂, and use that estimate in Eq. (13) to compute the sample size

needed for the desired accuracy. The second option is to use the upper bound expression in Eq.

(13), instead of the equality term, which does not depend onp̂. However, one must be aware that

upper bound expression generally provides conservative results, i.e., it would lead to large values

of the required sample size. It is noted that the upper bound expression becomes exact atp̂ = 0:5:

Now, with aid of these equations, an algorithm is developed to train feedforward networks

with quantified degree of accuracy, given a confidence level. The algorithm is presented in the

following steps.
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Design Algorithm

a. Define a training set
�
�

0; Y 0
	

to be used as the initial training set for the network design.

b. Choose a feedforward network with one hidden layer. The hidden layer can be any type of

layer, such as tan sigmoid, log sigmoid, etc. The output layer should be a pure linear layer.

c. Train the network using the sequential algorithm described earlier or any other training

algorithm. If, however, the optimization does not converge, one has to either increase the

limit on the number of epochs or sequences of networks, decrease the desired network error

tolerance, or restart the training with a different set of initial weights.

d. Choose a confidence level� for the network accuracy.

e. Choose a desired tolerance for the network point-wise relative error,eetol. This represents the

acceptable point-wise relative difference between the ANN’s approximation and the exact

functional value(s) at any point in the input space (not limited to the training set only). In

this paper, this tolerance is defined in a percent form. Note: This error tolerance should

not be confused with the error toleranceetol (on the network SSE), used in the training

algorithm (see step c).

f. Choose a tolerance level,ptol, for the probability of the network exceeding the desired error

tolerance.

g. Takem samples of the network error by randomly choosingm points in the input (design)

space,�1 � f�1; �2; . . . ; �mg and computing the network error for each of the points. It is

best that none ofm points should be in the initial training set (�
0). Moreover, the network

errors are computed by simulating the ANN as well as the true function for each of the

design points and subtracting one from the other. Lete1; e2; . . . ; em denote the sampled

network errors (percent relative errors). The sample sizem must at the least be greater than
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or equal to 30, however, and needs to be assigned based on the degree of confidence or

accuracy that is desired.

h. Define trial success as the network error exceeding the desired tolerance, and count the

number of successes,ns, in them trials above. Note that if no successful event is observed

in m trials, additional trials (samples) must be taken, up to a designer-defined limit, until

a successful event is observed. Additional discussion is provided on this point later in this

section.

i. Compute the sample proportion,̂p and q̂

p̂ =
ns

m
; q̂ = 1 � p̂ (14)

j. Compute the upper bound confidence level on the probability of network error exceedingetol

pu = p̂ + Z�=2

r
p̂q̂

m
(15)

k. If pu � ptol, accept the designed network. Otherwise, add them (or those for which the

network error exceed the tolerance) sample points to the training set, i.e.,� =
�
�0 �1

�
; Y =

�
Y 0 Y 1

�
, and redesign the network by going back to step (a) of the algorithm and repeating

the entire algorithm. This procedure may be repeated until convergence is achieved or a limit

on the number of iterations, as defined by the designer, is reached. It should be mentioned

that the size of the ANN (nodes in the hidden layer) may need to be increased if the learning

rate of the network becomes too slow during training or the desired network error tolerance

cannot be achieved.

l. In some applications, the user may desire to have different accuracy requirements based on

the absolute or relative magnitude of the input parameters. In such a case, it is more feasible

to have multiple stochastic criteria for network accuracy. The prescribed stochastic algorithm

may easily be adopted to handle multiple stochastic criteria for network accuracy. Steps (a)-

(c) would remain the same. Perform steps (d)-(j) for each required accuracy condition. In
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step (k), determine ifpu � ptol for each accuracy requirement. If everyone of the accuracy

tests pass, accept the network. Otherwise, add the random sample points, either all the

random test data or those for which the network error exceed the tolerance, to the training

set, i.e.,� =
�
�0 �1

�
; Y =

�
Y 0 Y 1

�
, and redesign the network by going back to step (a)

of the algorithm and repeating the entire algorithm.

As mentioned in step (g) of this algorithm, there is a possibility that no successful event is

observed in them trials. In such a case, one has to take more samples until a successful event is

observed. However, a limit should be established on the sample size such that if no successful

event is observed the trained ANN is accepted. Such a limit may be established from Eq. (13).

For example, for a sample size ofs, if no successful event is observed, it implies thatp̂ < 1

s .

Assume that a(1� �)100% confidence is desired with 1% tolerance on the true probability of

success, then from Eq. (13), witĥp = 1

s and q̂ = 1, the sample size necessary for this level of

tolerance and accuracy is established as follows

n =
Z2

�=2p̂q̂

e2
�

10000Z2

�=2

s
(16)

which would be satisfied if

s � 100Z�=2: (17)

For example, for a 95% confidence level,Z�=2 = 1:96, so that the desired network accuracy

would be obtained if the sample size is not smaller than 196.

V. CONVERGENCE

In this section, convergence behavior of the two key parts of the proposed ANN synthesis

algorithm is investigated through empirical analysis. In the empirical approach, convergence of

the algorithms is analyzed by investigating the behavior of each algorithm versus the functional
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complexity of the map the network has to approximate. The measure of functional complexity

used here is the functional variation, which is defined as follows for scalar functions

V =

x2Z

x1

����dy(x)dx

����dx (18)

wherey(x) denotes the functional relationship the ANN is to approximate. First, convergence

of the cascading part of the algorithm is considered. To accomplish this, the following scalar

function is used for ANN approximation.

y(x) = (1� �) sin (0:2�x) + � sin (30�x) ; 0 � x � 1 (19)

where� is an arbitrary constant between 0 and 1. At� = 0, the function is a slow varying low

frequency sine function, with small functional variationV (computed as 1.0). As� is increased

the high frequency component increases, and with it so does the functional variationV . For

example, at� = 1, the functional variation takes a value of 60.

Two variations of the cascading procedure were presented earlier. In the first variation, each

new ANN is designed to approximate the network error resulted from its previous network. The

second variation is the same as the first except that after each new ANN training the overall

network (aggregate of all the cascades) is trained using the original training data. Both variations

are considered in the convergence analysis, wherein ANNs were trained for five different values

of parameter�. Two-layer feedforward networks, with a tan sigmoid hidden layer and a pure

linear output layer, were used. The training set included 50 points, equally distributed between

0 and 1 radians. The performance goal was defined as the sum squared error (SSE) being less

than or equal to 1.00e-6. The number of nodes used in the initial network was 20 for� = 0;

25 for � = 0:25 or � = 0:5; and 30 for� = 0:75 or � = 1:0. These values were chosen in an

ad hoc way to take into account the functional complexity of the function to be approximated.

The number of nodes used in each of the subsequent network was randomly chosen from the

range of 4–11. Tables 1 and 2 summarize the training results for the first and second variations,
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respectively.These result indicate that, as expected, the overall size of the network increases as

the functional variation increases. Typically, the first variation of the algorithm, wherein each

network is trained for the error of the previous network, results in larger network size (more nodes

in the hidden layer). However, the difference in the network sizes between the two variation in

Table 1. Convergence of the Cascading Algorithm, First Variation

�

Functional
Variation, V

No. of
Cascades

Total Number of
Nodes

0.00 0.59 0 20

0.25 14.98 2 42

0.50 29.96 7 83

0.75 44.94 4 62

1.00 59.92 4 62

Table 2. Convergence of the Cascading Algorithm, Second Variation

�

Functional
Variation, V

No. of
Cascades

Total Number of
Nodes

0.00 0.59 0 20

0.25 14.98 1 35

0.50 29.96 2 42

0.75 44.94 1 36

1.00 59.92 3 52

most cases is not drastically high. The advantage of first variation over the second is that the

size of the network to be trained at each sequence remains fairly small (in this example, between

4 and 11), whereas the size of the network adds up in each sequence of the second variation.

The second part of the ANN synthesis algorithm has to do with the iterative, statistics-based

accuracy test for network training. Here, the same empirical approach is used to investigate

the convergence of the algorithm. Using the same functional family provided in Eq. (19),

the training process described for the cascading part of the algorithm was continued to assess

the performance of the statistics-based procedure. The statistical requirements were defined as
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desiring 99% confidence that the probability of the relative approximation error exceeding 5% be

less than 5 percent. Table 3 provides the results of the statistics-based procedure, using the second

variation of the cascading algorithm for network training. Note that the cascading part of the

ANN synthesis algorithm is totally distinct from the statistics-based part of the algorithm, hence

it should not matter to the statistics-based procedure which is used. In this table, the number

Table 3. Convergence of the Statistics-Based Algorithm

�

No. of
Iterations

No. of
Additional

Training Points

No. of
Additional

Eval. Points

Final Network
Size

0.00 0 0 100 20

0.25 1 7 200 39

0.50 1 7 200 42

0.75 2 5 300 43

1.00 2 6 300 59

of iterations refers to the number of times where the network failed the statistical accuracy test,

such that additional training points were used and network was retrained. Here, only those points

in the sample that did not meet the accuracy criteria were added to the training set. Note that the

initial training of the networks were based on a 50–point training data. It is observed from Table

3 that the required number of iterations and the additional training data are quite reasonable for

various levels of functional complexity. Note that in these experiments on a small-scale task,

the size of the synthesized networks were quite acceptable. Based on our other experiments, we

expect to also obtain reasonably-sized networks for more difficult tasks. Also, it should be noted

that even with these empirical results, it is not possible to know how fast the algorithm would

converge in general. However, our experience with a variety of problems have demonstrated

good convergence behavior.
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VI. NUMERICAL EXAMPLES

In order to illustrate the feasibility of the proposed ANN design and training approach, it

is used in the design and training of neural networks used in a dynamics and controls analysis

application for the NASA’s Lewis spacecraft.

A. Spacecraft Application: Static Map

In the first example, a structural model of the spacecraft, consisting of the rigid-body modes,

and the first ten flexible modes, is used in the analysis. The attitude control system model

included full models (as they were available) of reaction wheels, rate gyros, and the star tracker.

However, a linearized model of the wheel dynamics was used. A Kalman filter was designed

and used to estimate the vehicle’s attitude from the sensor data. The reaction wheel dynamics

included the linear friction model, limits on the input command voltages and digital voltage

quantization, as well as the quantization effects on wheel RPM outputs due to the wheel’s

optical encoder. To each gyro dynamic model output channel, random signals were added, which

represent random drift walk and instrument noise. The modeling of the star tracker included

noise and alignment errors. The spacecraft disturbances included environmental disturbances,

which included gravity gradient torques, drag torques, magnetic unloading, as well as, a periodic

disturbance at 0.3 Hz in roll and yaw axes. Both the spacecraft structure and the attitude control

system were modeled using the various blocks of the SIMULINK software package.

Here, assume that there is uncertainty in the magnitudes of the first two flexible modes, and

therefore it is desired to design a neural network to map the relationship between the changes

in the frequencies of those modes, as well as changes in the attitude control bandwidth to the

dynamic performance of the spacecraft. In this case, the performance is taken as peak-to-peak

steady-state response in the pitch axis. A multiplicative scaling variable was used for each of

the input variables, to represent the relative change from the nominal value (e.g., a scaling of
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1.1 represents a value 1.1 x nominal value). The scaling variable associated with the flexible

mode frequencies had a range of 0.85 to 1.2 each, and the scaling variable associated with

the controller bandwidth had a range of 0.5 to 1.5. With a uniform intervals of 0.05 and 0.2

used for the frequency scaling variables and bandwidth scaling variables, respectively, an initial

training set, consisting of 384 training points, was generated. The training data was generated by

performing a closed-loop dynamic simulation of the system for each combination of values of

the scaling variables, and for the disturbances discussed earlier. Each simulation was a discrete

linear simulation, and was run for one orbit, with each orbit assumed to be 5996 seconds in

duration. After each simulation run, the peak-to-peak response of the spacecraft in the pitch axis

was computed and placed in the appropriate location in the training data output. It was observed

from the training data that certain combination of values of scaling variables resulted in dynamic

instability, resulting in huge peak-to-peak response levels. These values were all limited to 1000

arc-sec to avoid numerical conditioning problems.

Following the statistics-based, sequential (first variation) algorithm outlined in the paper,

a two-layer feedforward network, with a tan sigmoid hidden layer and a pure linear output

layer, was designed and trained to provide the desired mapping. The network was designed

with a single stochastic accuracy criterion, which was to provide a 99% confidence level that

the probability of its approximation exceeding a 5% error level would be no greater than 5%.

The entire training process was performed using the ’trainlm’ routine of the MATLAB’s Neural

Network Toolbox, which is based on the Levenberg-Marquardt training approach. The history

of the training process is provided in Table 1. First, a two-layer feedforward network with

six nodes was initialized and trained, with a sum squared error (SSE) goal of 0.0001 for the

output normalized data (normalized with respect to maximum absolute value). This network

reduced the SSE to 0.0003686 after 400 epochs of training. However, the training of this net

was stopped after 400 epochs due to lack of progress in reducing the SSE (less than 0.1% change
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in 25 epochs). Following the sequential approach, the network error was computed and used

as the new training output data for a next net. The number of nodes in the second net was

randomly chosen between 3 and 8, and turned out to be 5. The second ANN reduced the SSE

to 0.0002824 after 500 epochs of training, at which time the training was stopped due to lack

of progress. The procedure continued on, designing and training three more ANNs, before the

target SSE was reached, as indicated in Table 4. It should be pointed out that the convergence

trends shown in Table 4 were also observed with different initial conditions. Now, following

Table 4. Training History, first ANN

ANN No
No. of
Nodes

No. of
Epochs

SSE

1 6 400 0.0003686

2 5 500 0.0002824

3 4 250 0.0002694

4 5 750 0.0002403

5 7 591 0.0000949

Total 27 2491

the statistics-based approach, 100 points in the feasible range of the variable space were chosen

randomly, and then used in the discrete simulation to generate peak-to-peak response values for

the system. Next, each point in the test data was also simulated using the neural network trained

initially. For each test point, the output of the neural network was compared to the true output

(simulation results), which resulted in 19 out of the 100 test points having a network error greater

than 5%, the desired accuracy. The proportion from Eq. (14) turns out to be 0.19, which results

in the upper bound value for the probability of network exceeding the desired accuracy, from

Eq. (15), of 0.2912, for a 99% confidence level. This was well above the desired tolerance on

the probability of failure, which was set at 5%. Therefore, the initial ANN was rejected, and

the test data was added to the original training data.
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Initializing the ANN to be trained with the weights and biases of the first network, a two-layer

feedforward network with 27 nodes, the network was trained following the sequential algorithm

used in the first run. With the SSE goal of 150 (for the actual (non–normalized) output), and

using the Levenberg-Marquardt routine, the network reduced the SSE from 1.59e+6 to 232.65,

after 800 epochs of training, before training was stopped due to lack of progress. Following

the sequential approach, the network error was computed and used as the new training output

data for a next net. The number of nodes in the second net was randomly chosen between 3

and 8, and turned out to be 8. The second ANN reduced the SSE to 149.5, after 585 epochs

of training, where at the SSE goal was reached. The overall training history for the second

network is given in Table 5.

Table 5. Training History, second ANN

ANN No
No. of
Nodes

No. of
Epochs

SSE

1 27 800 232.65

2 8 585 149.50

Total 35 1385

Similar to the treatment for the previous network, 100 points in the feasible range of the

variable space were chosen randomly, and then used in the discrete simulation to generate peak-

to-peak response values for the system. Next, each point in the test data were also simulated

using the second neural network. For each test point, the output of the neural network was

compared to the true output (simulation results), which resulted in none out of the 100 test

points having a network error greater than 5%, the desired accuracy. Although, the proportion

from Eq. (14) turns out be null, which results in the upper bound value for the probability

of network exceeding the desired accuracy, from Eq. (15), being 0. However, it should be

remembered that the upper bound on the probability, as represented by Eq. (15), is not valid
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at probabilities too close to 0 or 1. However, even if one conservatively assumes that the

proportion was at 0.01 (which corresponds to 1 failure in 100 samples), the upper bound value

for the probability of network exceeding the desired accuracy becomes 0.0357, which is well

below the desired level of 0.05, and thus the network is accepted. Now, with this network the

designer can determine the effects of uncertainty in the flexible modes as well as changing the

control system bandwidth by an almost instantaneous simulation of the net, bypassing the costly

full-up simulations needed in the conventional approach.

B. Spacecraft Application: Dynamic Map

A second example, again based on a dynamics and control analysis application for the NASA

Lewis spacecraft, is presented. This example illustrates the design and training of an ANN to

approximate the rigid-body dynamics of the Lewis spacecraft. Specifically, the ANN will map

the functional relationship between the spacecraft’s roll, pitch and yaw body rates and applied

torques (i.e., disturbance + control) at thekth discrete time step to the roll, pitch and yaw attitude

rates at the next discrete time step,k+1. Using the block diagram from Fig. 3, a unit delay is

used to feed back the current (kth) attitude rates, which are multiplexed together with thekth

applied torques to form the inputs to the ANN.

Previous experience with on-orbit simulations of spacecraft dynamics have shown that the

typical attitude rate responses have two distinct levels of magnitude: 1) relatively large levels,

typically during the short-duration, initial transient phase; and 2) relatively small, steady-state

levels after the initial transients have died down (these steady-state levels are typically several

orders of magnitude smaller than the initial transients). In order for a single ANN to approximate

these two different levels of responses well, its training set must include adequate numbers of

training points from both the large and small magnitude levels or ranges. Moreover, separate
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stochastic criterion for network accuracy must be established for the two ranges of attitude rate

magnitudes.

For this specific example, a feedforward ANN with a hidden layer with 8 neurons was

designed to approximate the rigid-body dynamics. A tan sigmoid activation function was selected

for the hidden layer neurons. A target SSE value of 10—12 was chosen. The ANN was to have

a dual accuracy criteria, such that it provided 99% confidence level that the probability that its

approximation of the large magnitude attitude rate responses exceeding a 0.01% error level would

be no greater than 5%, and a 99% confidence level that the probability that its approximation

of the small magnitude attitude rate responses exceeding a 0.02% error level would also be

no greater than 5%. Note that target percent error levels of the ANN outputs, for this second

example, were much smaller than the corresponding value (5%) for the ANN design from the

first example. The tighter ANN output error levels here were required because of the use of

this ANN to approximate a dynamic model (see Fig. 3): because of the recurrent nature of the

problem, any errors in the ANN output would be fed back and tend to build up over time, in

turn degrading the ANN-based approximation.

The initial training data was generated, in MATLAB/SIMULINK, using a 4th order Runge-

Kutta nonlinear integration routine to integrate the following basic rigid body equation of motion:

dw

dt
= I

�1(T � w � Iw) (20)

wherew is the vector of spacecraft roll, pitch and yaw attitude rates;I is the spacecraft inertia

matrix; andT is the vector of total applied torques to the spacecraft. The initial training set

consisted of randomly selected values of the Lewis spacecraft’s attitude rates and applied torques,

within the expected operating ranges (from both the transient and steady-state ranges), forming

the input data. Because the transient phase is much shorter in duration than the steady-state phase,

the majority of the initial input points were selected from the latter. To cover the transient phase,
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25 random sample points at the large magnitude level were selected, while 200 random sample

points at the small magnitude level were selected for the steady-state phase. In addition to

these 225 random sample points, various combinations of input training sample points, taken at

the upper and lower limits of the expected operational ranges, were included to bring the total

number of initial sample points to 354. The corresponding training output, or target, data was

computed by treating the input attitude rates as initial values, and integrating Eq. (20) over a

single time step interval, for this example, from 0 to 0.256 seconds, while holding the applied

torque value constant over that interval. The attitude rates at 0.256 seconds were then recorded

as the target data. Prior to ANN training, both the input and output training data were scaled

such that they would all lie within a range of +/- 1.

Table 6 summarizes the training history of the ANN. The first column indicates the training

iteration for the ANN, with No. 1 being the initial training; the number of training epochs per

iteration is shown in the second column ; the third column shows the number of training sample

points used in each iteration; the fourth and fifth columns show the computed upper bound on

the probability that the ANN output error level exceeding the target error levels for the large

and small magnitude responses, respectively; and finally, the last column shows the value of

the ANN SSE after each iteration. After the initial training of the ANN, the statistical check,

using randomly selected sample points, 104 each from the large and small response magnitude

levels, showed that the large magnitude error level upper bound probability was computed to be

well within the 5% target, however, the small magnitude error level upper bound probability,

at 46%, was well above desired. Following the design algorithm, all 104 random statistical

test samples from the small magnitude response levels were added to the original 354 sample

points and the ANN trained again. Since the large magnitude error level upper bound probability

was already achieved, no additional sample points were added from that response range. This

process was repeated through the 7th training iteration, where the random statistical tests showed
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that the ANN’s small magnitude error level upper bound probability was 7%. Note that, for

this example, sequential design of the ANN was unnecessary, and thus the number of hidden

layer neurons remained at 8. Although not quite reaching the 5% error level probability and

the SSE targets, this ANN was deemed acceptable at that 7% error level probability and 7.3347

x 10 —9 SSE values.

Table 6. Training History of Rigid Body Dynamics ANN.

Training
Iteration

No. of
Epochs

No. of
Training

Sample Points

Large Mag.
Upper Bound

Prob. (%)

Small Mag.
Upper Bound

Prob. (%)
SSE

1 4500 354 3.51 46.63 1.4155 x 10-8

2 4500 458 3.51 20.85 8.5679 x 10-9

3 1500 562 3.51 19.61 8.3075 x 10-9

4 1500 666 3.51 23.30 8.1546 x 10-9

5 1500 770 3.51 19.61 8.0513 x 10-9

6 1500 874 3.51 14.42 7.5943 x 10-9

7 1500 978 3.51 7.11 7.3347 x 10-9

Total 16,500 978

To test this ANN, it was used in the ANN-based model (depicted in Fig. 3) to represent the

rigid-body plant in a SIMULINK simulation of the attitude control system on-board the Lewis

spacecraft. Because of the discrete ANN-based model representation of the Lewis dynamics,

fixed-step, discrete algebraic updates could be employed to run the simulation. The results from

this simulation were then compared with results from another Lewis attitude control SIMULINK

simulation, one which used the nonlinear, rigid-body equations (Eq. 20) directly to represent a

continuous model of the Lewis spacecraft dynamics. In that simulation, conventional, Runge-

Kutta integration was used to propagate the equations of motion. Comparisons between the two

simulations have shown that the ANN–based rigid body dynamics model matched the results of
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the conventional, differential equation representation very well, and that the ANN-based model

simulation executions times were significantly reduced from those of the conventional model

simulation times. In this case, the ANN-based simulation took less than one second, while the

conventional simulation required at least 2 hours to perform the required analysis/simulation. Fig.

4 shows results from a typical simulation comparison. In this case, both simulations involved

a controlled periodic slewing maneuver about the spacecraft’s roll axis of +/- 20 degrees (+/–

0.349 radians) during a single orbit. The top plot shows the roll attitude responses from the

continuous plant model simulation and the ANN-based model simulation. The bottom plot

shows the difference, or error between the simulated roll attitude responses. As can be seen

from the two plots, the ANN-based model performed very well.

VII. CONCLUDING REMARKS

This paper presented a novel methodology for efficient and fast training neural networks,

with specified accuracy. Neural networks were considered within the context of dynamics and

controls analysis/design to either approximate the functional relationships between design change

parameters (be they structural or material properties, in the disturbance environment, or in the

control system design) and the performance of the system/components, or to provide dynamic

maps that approximate the nonlinear and complex dynamics of the system/components. The

design methodology presented in this paper allows the design of neural networks to a specific

level of accuracy, for a given statistical confidence level, and accounts for input and output

data not used in the original training set. The proposed method should work for applications

wherein an arbitrary large source of training data can be generated. Specifically, two-layer

feedforward neural networks were designed to approximate the functional relationship between

the component/spacecraft design changes and measures of its performance. A training algorithm,

based on statistical sampling theory, was presented, which guarantees that the trained networks

provide a designer-specified degree of accuracy in mapping the functional relationship. Within
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each iteration of this statistical-based algorithm, a sequential design algorithm was used for the

design and training of the feedforward network to provide rapid convergence to the network

goals. Here, at each sequence a new network was trained to minimize the error of the previous

network. The design algorithm might help to avoid the local minima phenomenon that hampers

the traditional network training, thereby speeding up the training process. Numerical examples

carried out on a NASA spacecraft application demonstrated the feasibility of the proposed neural

network design methodology. Finally, it should be pointed out that although the proposed

technique has exhibited good convergence properties with reasonably-sized networks for a diverse

group of applications, including simple and complex maps, formal proof of its convergence

properties is an open issue for future research.
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